3.333 \(\int \tan (c+d x) (a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=213 \[ \frac{2 \left (a^2 A-2 a b B-A b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d} \]

[Out]

-(((a - I*b)^(5/2)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d) - ((a + I*b)^(5/2)*(A + I*B)*
ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d + (2*(a^2*A - A*b^2 - 2*a*b*B)*Sqrt[a + b*Tan[c + d*x]])/d
+ (2*(a*A - b*B)*(a + b*Tan[c + d*x])^(3/2))/(3*d) + (2*A*(a + b*Tan[c + d*x])^(5/2))/(5*d) + (2*B*(a + b*Tan[
c + d*x])^(7/2))/(7*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.530812, antiderivative size = 213, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {3592, 3528, 3539, 3537, 63, 208} \[ \frac{2 \left (a^2 A-2 a b B-A b^2\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

-(((a - I*b)^(5/2)*(A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d) - ((a + I*b)^(5/2)*(A + I*B)*
ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d + (2*(a^2*A - A*b^2 - 2*a*b*B)*Sqrt[a + b*Tan[c + d*x]])/d
+ (2*(a*A - b*B)*(a + b*Tan[c + d*x])^(3/2))/(3*d) + (2*A*(a + b*Tan[c + d*x])^(5/2))/(5*d) + (2*B*(a + b*Tan[
c + d*x])^(7/2))/(7*b*d)

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \tan (c+d x) (a+b \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx &=\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}+\int (-B+A \tan (c+d x)) (a+b \tan (c+d x))^{5/2} \, dx\\ &=\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}+\int (a+b \tan (c+d x))^{3/2} (-A b-a B+(a A-b B) \tan (c+d x)) \, dx\\ &=\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}+\int \sqrt{a+b \tan (c+d x)} \left (-2 a A b-a^2 B+b^2 B+\left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)\right ) \, dx\\ &=\frac{2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}+\int \frac{-3 a^2 A b+A b^3-a^3 B+3 a b^2 B+\left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right ) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}+\frac{1}{2} \left ((i a+b)^3 (A-i B)\right ) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{1}{2} \left (-3 a^2 A b+A b^3-a^3 B+3 a b^2 B+i \left (a^3 A-3 a A b^2-3 a^2 b B+b^3 B\right )\right ) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}+\frac{\left ((a-i b)^3 (A-i B)\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac{\left ((a+i b)^3 (A+i B)\right ) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=\frac{2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}-\frac{\left (i (a+i b)^3 (A+i B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}+\frac{\left ((a-i b)^3 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac{(a-i b)^{5/2} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{(a+i b)^{5/2} (A+i B) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}+\frac{2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt{a+b \tan (c+d x)}}{d}+\frac{2 (a A-b B) (a+b \tan (c+d x))^{3/2}}{3 d}+\frac{2 A (a+b \tan (c+d x))^{5/2}}{5 d}+\frac{2 B (a+b \tan (c+d x))^{7/2}}{7 b d}\\ \end{align*}

Mathematica [A]  time = 1.58262, size = 258, normalized size = 1.21 \[ \frac{-7 i (B+i A) \left (\frac{2}{5} (a+b \tan (c+d x))^{5/2}+\frac{2}{3} (a-i b) \left (\sqrt{a+b \tan (c+d x)} (4 a+b \tan (c+d x)-3 i b)-3 (a-i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )\right )\right )-7 i (-B+i A) \left (\frac{2}{5} (a+b \tan (c+d x))^{5/2}+\frac{2}{3} (a+i b) \left (\sqrt{a+b \tan (c+d x)} (4 a+b \tan (c+d x)+3 i b)-3 (a+i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )\right )\right )+\frac{4 B (a+b \tan (c+d x))^{7/2}}{b}}{14 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

((4*B*(a + b*Tan[c + d*x])^(7/2))/b - (7*I)*(I*A + B)*((2*(a + b*Tan[c + d*x])^(5/2))/5 + (2*(a - I*b)*(-3*(a
- I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]] + Sqrt[a + b*Tan[c + d*x]]*(4*a - (3*I)*b + b*Tan
[c + d*x])))/3) - (7*I)*(I*A - B)*((2*(a + b*Tan[c + d*x])^(5/2))/5 + (2*(a + I*b)*(-3*(a + I*b)^(3/2)*ArcTanh
[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]] + Sqrt[a + b*Tan[c + d*x]]*(4*a + (3*I)*b + b*Tan[c + d*x])))/3))/(14
*d)

________________________________________________________________________________________

Maple [B]  time = 0.108, size = 2426, normalized size = 11.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x)

[Out]

-4*b/d*B*a*(a+b*tan(d*x+c))^(1/2)+b^3/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2
+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2
)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*a^3+3/4/d*ln((a+b*tan(d*x+c))^(1
/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-3/4/d*ln
(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a
)^(1/2)*a^2+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/
(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*a^3-1/4*b^2/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d
*x+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/4*b^2/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b^3/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/
2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B+2/d*A*(a+b
*tan(d*x+c))^(1/2)*a^2-2*b^2/d*A*(a+b*tan(d*x+c))^(1/2)+2/3/d*A*(a+b*tan(d*x+c))^(3/2)*a+2/7*B*(a+b*tan(d*x+c)
)^(7/2)/b/d-2/3*b*B*(a+b*tan(d*x+c))^(3/2)/d-2*b/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*
a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*(a^2+b^2)^(1/2)*a-1/4/b/d*ln((a+b*tan(d*x+
c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b
^2)^(1/2)*a^2+2*b/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/
2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*(a^2+b^2)^(1/2)*a+1/4/b/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^
2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^2+1/4/b/d*ln((a+b*t
an(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)
*a^3-1/4*b/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2
+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)+3/4*b/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a
)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/b/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+3*b/d/(2*(a^2+b^2)^(1/2)-2*a)
^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2-3*
b^2/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^
2)^(1/2)-2*a)^(1/2))*A*a-3*b/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/
2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2+b^2/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x
+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*(a^2+b^2)^(1/2)-1/d/(2*(a^2+b^2)^(1
/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*
A*(a^2+b^2)^(1/2)*a^2+1/2/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(
1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)
^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*(a^2+b^2)^(1/2)*a^2-1/2/d*ln((a+b
*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/
2)*(a^2+b^2)^(1/2)*a-b^2/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+
c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*(a^2+b^2)^(1/2)+3*b^2/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(
a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*a+1/4*b/d*ln((a+b*tan(d*x
+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+
b^2)^(1/2)-3/4*b/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(
2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+2/5*A*(a+b*tan(d*x+c))^(5/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \tan{\left (c + d x \right )}\right ) \left (a + b \tan{\left (c + d x \right )}\right )^{\frac{5}{2}} \tan{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**(5/2)*tan(c + d*x), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+b*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out